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Empirical observations of how labs conduct research indicate that the adoption rate of open practices for trans- 
parent, reproducible, and collaborative science remains in its infancy. This is at odds with the overwhelming 
evidence for the necessity of these practices and their benefits for individual researchers, scientific progress, 
and society in general. To date, information required for implementing open science practices throughout the 
different steps of a research project is scattered among many different sources. Even experienced researchers 
in the topic find it hard to navigate the ecosystem of tools and to make sustainable choices. Here, we provide 
an integrated overview of community-developed resources that can support collaborative, open, reproducible, 
replicable, robust and generalizable neuroimaging throughout the entire research cycle from inception to publica- 
tion and across different neuroimaging modalities. We review tools and practices supporting study inception and 
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. Introduction 

Science is an incremental progress towards creating and organizing
nowledge through theories and testable predictions. Reproducibility is
 core part of science: being able to repeat or recreate scientific results
s essential for the complex process of knowledge accumulation. Due to
ts relevance, different terms have been introduced to describe specific
spects of the process, including “reproducibility ” when the same data
nd methods are used, “replicability ” when new data but same meth-
ds are used, “robustness ” when the same data but different methods
re used, and “generalizability ” when new data and methods are used
 Whitaker, 2019 ). Here, we use “reproducibility ” as an umbrella term,
ncompassing all aspects of recreating scientific results ( Poldrack et al.,
020 ). Open science tools and practices have been developed to advance
eproducibility, as well as accessibility and transparency at all stages of
he research cycle and across all levels of society. Together, they remove
arriers to sharing and facilitate collaboration, with the goal of improv-
ng reproducibility and, ultimately, accelerating scientific discoveries.
mportantly, such practices facilitate, but do not guarantee, higher qual-
ty. 

Empirical observations of how labs conduct research indicate that
he adoption rate of open practices and tools for reproducible and col-
aborative science, unfortunately, remains in its infancy. Even when
embers of a specific scientific community have taken a central role

n open science advocacy and tool development, like in the neuroimag-
ng community, the impact on the rest of the very same community
s limited. A recent survey ( Paret et al., 2022 ) including researchers
ho are senior and likely to hold a positive attitude towards open

cience, indicated that 42% have never pre-registered a neuroimaging
tudy and 34% have never shared their raw neuroimaging data. Many
f those who indicated that they pre-registered or shared their data at
east once likely did not do so in all their studies, and thus, the actual
ate of pre-registration and data sharing in neuroimaging is likely much
ower. 

The limited adoption of open science practices is at odds with
he overwhelming evidence that a lack of open practices in gen-
ral can hinder reproducibility with costs for scientific progress and
or society. Indeed, reproducibility issues have been undermining
he foundation of scientific research in several fields, such as psy-
hology ( Open Science Collaboration, 2015 ; Klein et al., 2018 ), so-
ial sciences ( Camerer et al., 2016 , 2018 ), neuroimaging ( Munafò
t al., 2017 ; Botvinik-Nezer et al., 2020 ; Li et al., 2021 ), preclini-
al cancer biology research ( Errington et al., 2021 ; Errington et al.,
021 ), and more ( Hutson, 2018 ; Nissen et al., 2016 ; Serra-Garcia and
neezy, 2021 ). As a response, there has been a rise in the de-
elopment of tools and approaches to facilitate reproducibility and
pen science, in the spirit of Findability, Accessibility, Interoper-
bility, and Reusability principles (FAIR) ( Wilkinson et al., 2016 ;
orgolewski and Poldrack, 2016 ; Nosek et al., 2018 ; Nosek et al.,
012 ; Nosek and Lakens, 2014 ; Poldrack et al., 2017 ; Poldrack et al.,
020 ; Poldrack et al., 2019 ; Clayson et al., 2022 ). Beyond their
otential to mitigate transparency and reproducibility issues, these
ractices provide important benefits for individual researchers by in-
reasing exposure, reputation, chances of publication, number of ci-
ations, media attention, potential collaborations, and position and
unding opportunities ( Allen and Mehler, 2019 ; McKiernan et al.,
016 ; Nosek et al., 2022 ; Markowetz, 2015 ; Hunt, 2019 ). Hence, one
ould have expected a higher uptake for such beneficial practices and
ools. 
2 
ch data management, data processing and analysis, and research dissemination.
e can be found at https://oreoni.github.io . We believe it will prove helpful for
ake a successful and sustainable move towards open and reproducible science
ole in its future development. 

Recently, a parallel top-down change of policies started to further
upport the adoption of open science practices and tools. For example,
unding agencies are now enforcing the implementation of certain open
ata practices for publicly funded research (e.g., the NIH in the U.S.
nd the ERC in Europe; de San Román 2021 ; de Jonge et al., 2021 ), and
ome require a plan for research data storage and sharing, openly acces-
ible publication formats and dissemination plans beyond the classical
ournal publication. Additionally, they provide funding for the devel-
pment of necessary software, hardware, and collaborative infrastruc-
ure to support the transition to open and reproducible neuroscience
e.g., the NIH BRAIN Initiative, NIH ReproNim project ( Kennedy et al.,
019 ), NSF CRCNS, EU Human Brain Project, German NFDI). These ef-
orts by funding agencies are complemented by stakeholder institutions
ike the OHBM, the International Neuroinformatics Coordinating Facil-
ty (INCF), the Chinese Open Science Network (COSN), and the Open
cience Framework (OSF), who provide platforms for the development
f standards and best practices of open and FAIR neuroscience research,
ssemble training material, and promote open science practices. More-
ver, journals have started changing their policies with regard to open
ccess options and data sharing. Together, these institutional measures
im at fostering the benefits of open science practices, and the adoption
f open and reproducible science standards will be increasingly required
or labs and individual researchers. 

Nevertheless, multiple barriers of entry to open science practices are
riving the modest rate of adoption in the general research community.
mong them are lack of knowledge or training and lack of skills or re-
ources. A survey by Borghi and Van Gulick (2018) found that 65%
f researchers reported openness and reproducibility as motivation for
mplementing research data management in MRI, but between 40-50%
ointed to the lack of best practices/tools and knowledge/training as
ain obstacles for embracing these practices. Likewise, a more recent

urvey indicated that similar percentages of researchers in neuroimag-
ng have never learned how to pre-register or share their data online
nd that they know too little about pre-registration platforms and suit-
ble data repositories ( Paret et al., 2022 ). These later challenges could
e alleviated by a simplified overview of the open resources available.
owever, information required for implementing open science practices
ver the full research cycle is currently scattered among many different
ources. Even experienced researchers in the topic often find it hard to
avigate the ecosystem of community-developed tools and to make sus-
ainable choices. 

This manuscript provides an integrated overview of community-
eveloped resources critical to support open and reproducible neu-
oimaging throughout the entire research cycle and across different neu-
oimaging modalities (particularly MRI, MEG, EEG, and PET). Instead of
etailing, as others before, why one should adopt open and reproducible
ractices ( Munafò et al., 2017 ; Nosek et al., 2012 ; Poldrack et al., 2017 ;
cKiernan et al., 2016 ), we focus on providing a resource overview.
ur goal is to make it easier for scientists to select the most valuable in-

truments for their practice at every step of the research workflow, and
onsequently accelerate the broader adoption of open science tools and
ractices, increasing scientific reproducibility and openness. We provide
ustification on why each implements good practices, as well as how to
ntegrate them into the research workflow. 

In this review we do not aim to recommend particular tools over
thers, as the ideal ones may depend on many factors that vary be-
ween researchers. However, we highlight some points to consider at
he time of selection. Typically it is advisable to choose tools that in-
egrate with other tools and practices already established in the lab,

https://oreoni.github.io
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ave a relatively fast learning curve, and a long-term benefit. In or-
er to increase sustainability, tools should be relatively mature, well
aintained, and supported by an active community. Another indicator

s whether the tools and practices are integrated in already established
oolboxes or supported by large open science organizations. If still mul-
iple tools meet these criteria, then it might be advantageous to choose
ne that is used by peers and collaborating partners. When we recom-
end practices, we state the problems they are supposed to address. We

lso encourage the readers to join the development teams and leader-
hip of those tools, becoming an active part of the open neuroimaging
ommunity. Contributions from individuals who are experiencing barri-
rs to the uptake of specific practices are particularly encouraged, since
hey can help mitigate these barriers for the benefit of everyone. 

The manuscript is organized following the different steps of the re-
earch cycle: study inception and planning, data acquisition, research
ata management, data processing and analysis, and research dissem-
nation. For each step we provide a figure with subgoals (subsections
n the text) in the headings, some recommendations on how to achieve
hem in a bullet list, and supporting tools indicated by icons (see Figs. 1–
 ). To further guide the readers, the manuscript is accompanied by
 detailed table containing links and pointers to the resources fea-
ured in the text of each section (see Table S1 ). In addition, the con-
ent is available online as a Jupyter Book at https://oreoni.github.io
 https://doi.org/10.5281/zenodo.7083031 ). 

. Study inception, planning, and ethics 

Each individual decision from the beginning of the study will con-
ribute to facilitate or hamper reproducibility. In the current section,
e will describe practices and tools for preparation, piloting, pre-

egistration, obtaining participants’ consent and ongoing quality control
nd assessment (see Fig. 1 ). 

.1. Study preparation and piloting 

Research projects usually begin with descriptions of general, theo-
etical questions in documents such as grants or thesis proposals. Such
oundations are essential but necessarily broad. When the project moves
rom proposal to implementation, these descriptions are translated into
oncrete protocols and stimuli, a process that can be streamlined by
he incorporation of open procedures and comprehensive piloting. The
Fig. 1. Study inceptio
For each step, the figure contains the main goals (headings), spec

Sources : Icons from the Noun Project: Registration by WEBTECHOPS LLP; Share by a
the respective copy

3 
romise is that the more preparation and piloting is conducted prior to
ata collection, the more likely it is that the project will be successful:
hat analyses of its data can contribute to answering its motivating ideas
nd questions ( Strand, 2021 ). 

Standard Operating Procedures (SOPs) can take different forms, and
re powerful tools for planning, conducting, recording, and sharing
rojects. Ideally, SOPs describe the entire data collection procedure
e.g., recruitment, performing the experiment, data storage, preprocess-
ng, quality control analyses), in sufficient detail for a reader to conduct
he experiment themselves with minimal supervision, thereby contribut-
ng to reproducibility. SOPs may begin as an outline with vague descrip-
ions, preferably during the pilot stage , and then become more detailed
ver time. For example, if a session is lost due to a button box signal fail-
re, an image of its correct settings could be added to the SOPs. At the
nd of the project, its SOPs should be released along with its publications
nd datasets, to provide a source of answers for the detailed procedu-
al information that may be needed for experiment reproducibility or
ataset reuse, but are not included in typical publications. 

Many resources can assist with experiment planning and SOP cre-
tion. Documents and experiences from similar studies conducted lo-
ally are valuable, but should not be the only source of informa-
ion during planning, since, for example, a procedure may be con-
idered standard in one institution but not in another. Public SOPs
an serve as examples, as can protocols published on specialized sites
e.g., Protocol Exchange, protocols.io, Nature Protocols; see Table S1 ).
est practices guides are now available for many imaging modali-
ies (MRI: Nichols et al. 2017 ; MEG/EEG: Pernet et al. 2020 ; fNIRS:
ücel et al. 2021 ; PET: Knudsen et al. 2020 ). Open resources for stimu-

us presentations and behavioral data acquisition are also recommended
o increase reproducibility (see Section 3.2 ). 

Piloting should be considered an integral part of the planning pro-
ess. By “piloting ” we mean the acquisition and evaluation of data prior
o the collection of the actual experimental data, verifying the feasibility
f the whole research workflow. While it is not a necessary prerequisite
or reproducibility, it is a good scientific practice to produce higher qual-
ty research, and facilitates reproducibility via better documentation and
OPs. A piloting stage before starting data collection is important, not
nly for ensuring that the protocol will go smoothly when the first par-
icipant arrives, but also that the SOPs are complete and, critically, that
he planned analyses can be carried out with the actual experimental
ata recorded. For example, pilot tests may be set up to confirm that
n and planning 
ific recommendations (bullet list), and useful tools (icons). 
rjuazka; Computer warranty by Thuy Nguyen; Logos: used with permission by 
right holders. 

https://oreoni.github.io
https://doi.org/10.5281/zenodo.7083031
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e  
he task produces the expected behavioral patterns (e.g., faster reaction
ime in condition A than B), that the log files are complete, and that im-
ge acquisition can be synchronized with stimulus presentation. Pilot-
ng should also include testing the data storage and retrieval strategies,
hich may include storing consent documents ( Section 2.3 ), question-
aire responses, imaging data, and quality control reports. SOPs also
rescribe how data will be organized, preferably according to a schema
e.g., the Brain Imaging Data Structure, Section 4.1 ). Data organization
argely determines the efficient implementation of analysis pipelines and
mproved reproducibility, reusability, and shareability of the data and
esults. 

Analyses of the pilot data are very important and can take several
orms. One is to test for the effects of interest: establishing that the de-
ired analyses can be performed and that the data quality is sufficient to
roduce valid and reproducible results ( Sections 2.2 . and 2.4 ; for power
stimation tools see Table S1 ). A second type of pilot analysis is to es-
ablish tests for effects not of direct interest, but suitable for controls.
s discussed further in Section 2.4 , positive control analyses involve
trong, well-understood effects that must be present in a valid dataset. It
s worth mentioning that well structured and documented openly avail-
ble datasets (see Section 4 ) could also serve for analysis piloting though
hey would lack the test for potential site specific technical issues. Sim-
lations could also be used to ensure that the planned analysis is doable
nd valid. 

.2. Pre-registration 

Pre-registration is the specification of the research plan in advance,
rior to data collection or at least prior to data analysis ( Nosek and
tephen Lindsay, 2018 ). Pre-registration usually includes the study de-
ign, the hypotheses and the analysis plan. It is submitted to a registry,
esulting in a frozen time-stamped version of the research plan. Its main
im is to distinguish between hypothesis-testing (confirmatory) research
nd hypothesis-generating (exploratory) research. While both are nec-
ssary for scientific progress, they require different tests and the con-
lusions that can be inferred based on them are different ( Nosek et al.,
018 ). 

Registered reports is a relatively novel publishing format that can
e seen as advanced pre-registration. This format is becoming very
ommon, with a growing number of hundreds of participating journals
 Hardwicke and Ioannidis, 2018 ; Chambers, 2019 ). In a registered re-
ort, a detailed pre-registration is submitted to a specific journal, includ-
ng introduction, planned methods and potentially preliminary data.
hen, it goes through peer review prior to data collection (or prior
o data analysis in certain cases, for example for studies that rely on
arge-scale publicly shared data). If the proposed plan is approved fol-
owing peer review, it receives an “in-principle acceptance ”, indicat-
ng that if the researchers follow their accepted plan, and their conclu-
ions fit their findings, their paper will be published. An in-principle
ccepted registered report is sometimes required to be additionally pre-
egistered. Recently, a platform for peer review of registered reports
reprints was launched, named “Peer Community in registered reports ”
see Table S1 ). 

There are many benefits to pre-registration, from the field to the
ndividual level. Transparency with regard to the research plan, and
hether an analysis is confirmatory or exploratory, increases the cred-

bility of scientific findings. It helps to mitigate some of the effects
f human biases on the scientific process, and reduces analytical
exibility, p-hacking ( Simmons et al., 2011 ) and hypothesizing af-
er the results are known ( Nosek et al., 2019 ; Munafò et al., 2017 ;
ature, 2015 ; Kerr, 1998 ). There is initial evidence that the quality
f pre-registered research is judged higher than in conventional pub-
ications ( Soderberg et al., 2021 ). Nonetheless, it should be noted that
re-registration and registered reports are not sufficient to fully protect
gainst questionable research practices ( Paul et al., 2021 ; Devezer et al.,
021 ; Rubin, 2020 ) and their general impact will depend on the extent
4 
ournals will implement them. Registered reports also mitigate publica-
ion bias by accepting papers based on hypothesis and methods, inde-
endently of the findings. Indeed, it has been shown that pre-registered
tudies and registered reports include more null findings ( Allen and
ehler, 2019 ; Kaplan and Irvin, 2015 ; Scheel, 2020 ) and report lower

ffect sizes ( Schäfer and Schwarz, 2019 ) compared to other studies. For
he individual researcher, registered reports with a two-stage review are
n excellent example in which authors benefit from feedback on their
ethods before even starting data collection. They can help improve the

esearch plan and spot mistakes in time, and provide assurance that the
tudy will be published ( Wagenmakers and Dutilh, 2016 ; Kidwell et al.,
016 ). It should be noted, though, that registered reports can require a
ignificant time commitment, that is likely to pay off in the long-term but
s not easily accommodated in many traditional project funding models.

While pre-registration is not the common practice yet, it is becom-
ng more common over time ( Nosek and Stephen Lindsay, 2018 ) and
equirements by journals and funding agencies are already changing.
here are many available templates and forms for pre-registration, or-
anized by discipline or study types, for example for fMRI and EEG (see
able S1 ), and published guidelines for pre-registration in EEG are also
vailable ( Govaart and Schettino, 2022; Paul et al., 2021 ). There are
ifferent approaches as to what should be pre-registered. For instance,
ome believe it should be an exhaustive description of the study, in-
luding the background and justification for the research plan, while
thers believe it should be a short and concise document, including
nly the necessary details to reduce the likelihood of p-hacking and
llowing reviewers to review it properly during the peer review pro-
ess ( Simmons et al., 2021 ). Pre-registration can also be flexible and
daptive by pre-registering contingency plans or complex decision trees
 Benning et al., 2019 ). 

Once researchers develop an idea and design a study, they can write
nd pre-register their research plan ( Nosek and Stephen Lindsay, 2018 ;
aul et al., 2021 ). Pre-registration could be performed following the pi-
oting stage ( Section 2.1 ), but studies can be pre-registered irrespective
f whether they include a piloting stage or not. There are many online
egistries where researchers can pre-register their study. The three most
requently used platforms are: (1) OSF, a platform that can also be used
o share additional information about the study/project (such as data
nd code), with multiple templates and forms for different types of pre-
egistration, in addition to extensive resources about pre-registration
nd other open science practices; (2) aspredicted.org, a simplified form
or pre-registration ( Simmons et al., 2021 ); and (3) clinicaltrials.gov,
hich is used for registration of clinical trials in the U.S. (see Table S1 ).

Once the pre-registration is submitted, it can remain private or
ecome public immediately, depending on the platform and the re-
earcher’s preferences. Then, the researcher collects the data and ex-
cutes the research plan. When writing the manuscript to report the
tudy, the researcher is advised to include a link to the pre-registration,
learly and transparently describe and justify any deviation from the
re-registered plan and also report all registered analyses. Additional
nalyses to deepen some results or looking into unexpected effects are
ncouraged, and are part of the routine scientific investigation. The
dded benefit of pre-registration is that such analyses do not need to
each pre-specified levels of significance because they are reported as
xploratory. 

.3. Ethical review and data sharing plan 

The optimism of the scientific community about improving science
y making all research assets open and transparent has to take into ac-
ount privacy, ethics and the associated legal and regulatory needs for
ach institution and country. Whereas on the one hand sharing data
most often collected with public funds) is critical to advance science,
n the other hand, sharing data can in some situations become infeasi-
le to safeguard privacy. Data governance concerns the regulatory and
thical aspects of data management and sharing of data files, metadata



G. Niso, R. Botvinik-Nezer et al. NeuroImage 263 (2022) 119623 

a  

c  

G  

l
 

r  

t  

s  

n  

l  

a  

t  

g
 

w  

a  

p  

o  

g  

d  

s  

a  

e  

o  

t  

a  

I  

e  

p
 

i  

t  

t  

a  

a  

m  

n  

f  

2  

p  

2

2

 

p  

m  

t  

t  

o  

t  

e  

a  

a  

t  

w  

t  

t  

2  

i  

T  

t  

a  

d  

t

 

p  

u  

p  

s  

d  

C  

a  

m  

(  

t  

w  

s  

b  

A  

a  

c  

s  

a  

p  

p  

s  

m  

n  

e  

m  

e
 

t  

i  

p  

m  

(  

i  

t  

b  

a  

(  

p  

t
 

c  

t  

e  

o  

y  

d  

w  

a  

t  

t  

i  

c  

i  

t  

t  

s  

t  

t

3

 

u  

o  

(  
nd data-processing software (see Sections 6.1 –3 ). When data sharing
rosses national borders, data governance is called International Data
overnance (IDG). IDG depends on ethical, cultural and international

aws. 
Data sharing is beneficial for both reproducibility and the explo-

ation and formulation of new hypotheses. Therefore, it is important
o ensure, prior to data collection, that the collected data could be later
hared. Open and reproducible neuroimaging thus starts by (1) plan-
ing which data would be collected; (2) planning how these data would
ater be shared; (3) having ethical and legal clearance to share data; but
lso (4) the infrastructural means for this sharing (for more informa-
ion about data sharing and available platforms, see Section 6 ; for data
overnance see Section 4 ). 

Since 2014, the Open Brain Consent project (see Table S1 ), which
as founded under the ReproNim project umbrella, provides examples
nd templates translated to multiple languages to help researchers pre-
are consent forms for data sharing, including the recent development
f an EU GDPR-compliant template ( The Open Brain Consent working
roup, 2021 ). Such consent should include a statement about how the
ata will be shared, with whom, potential risks, and that the consent to
hare can be withdrawn (which is separate from consent to participate
nd withdraw from the study). Data sharing forms should also make
xplicit how these factors determine to what extent a later withdrawal
r editing of the data on the repository is possible. Given the interna-
ional nature of the majority of neuroscience projects, IDG has become
 priority ( Eiss, 2020 ). Further work will be needed to implement an
DG approach that can facilitate research while protecting privacy and
thics. Specific recommendations on how to implement IDG have been
roposed ( Eke et al., 2022 ). 

It should be noted that ethical review comprises more than data shar-
ng procedures. Its goals are safety, self determination, and the protec-
ion of rights of study participants. A central element is informed consent
o participate in the study, which requires that technical and scientific
spects of the study as well as regulations for participation in the study
re transparently communicated to the participants. Clinical research
ay require adherence to additional, country-specific regulations. Fi-
ally, when planning the recruitment procedures, it is important to aim
or equity, diversity and inclusivity ( Henrich et al., 2010 ; Forbes et al.,
021 ), avoiding obtaining results that may not generalize to larger
opulations and improving the quality of research (e.g., Baggio et al.
013 ). 

.4. Looking at the data early and often: monitoring quality 

Inevitably, unexpected events and errors will occur during every ex-
eriment and in every part of the research workflow. These can take
any forms, including dozing participants, hardware malfunction, data

ransfer errors, and mislabeled results files. As data progresses through
he workflow, issues are likely to cascade and amplify, perhaps masking
r mediating experimental effects, thereby damaging the reliability of
he results. The impact of such surprises can range from the trivial and
asily corrected to the catastrophic, rendering the collected data unus-
ble or conclusions drawn from it invalid. Identifying issues and errors
s early as possible is important to enable adding corrective measures
o the protocol, but also because some issues are much easier to detect
hen the data are in a less-processed form. For example, a number of

ypical artifacts in anatomical MRI are known to be easier to identify in
he background of the image and regions of no-interest ( Mortamet et al.,
009 ), and can easily remain undetected if the first quality control check
s set up after, e.g., brain extraction, which masks out non brain tissue.
hus, it is fundamental to pre-establish within the SOPs ( Section 2.1 )
he mechanisms set in place to ensure the quality of the study. There
re several mechanisms available that help to ensure that all required
ata are being recorded with sufficient quality and in a way that makes
hem analyzable. 
5 
Quality control checkpoints . Establishing quality control (QC) check-
oints ( Strother, 2006 ) is necessary for every project: which data are
sable for analyses, and which are not? At these key points in the pre-
rocessing or analysis workflow the data’s quality is checked, and if in-
ufficient, it does not move on to the next stage. Results from low quality
ata are much less likely to be reproducible with new data or methods.
ritically, the exclusion criteria of each checkpoint must be defined in
dvance (preferably stated in the SOPs and the pre-registration docu-
ent, see Sections 2.1 and 2.2 ) to preempt unintentional cherry-picking

i.e., excluding data points to reinforce the results), which is a major con-
ributor to irreproducibility via undisclosed flexibility. Some criteria are
idely accepted and applicable, for example, that all neuroimaging data

hould be screened to eliminate clear artifacts, such as data corrupted
y incidental electromagnetic interference or participants movements.
 similarly well-established checkpoint of the workflow is visualizing
nd inspecting the outputs of surface reconstruction methods in MRI,
hecking time activity curves in high binding regions for PET or power
pectral content in MEG and EEG; these fundamental QC checkpoints
nd their implementation are heavily dependent on the immediately
revious processing step. Such QC may be conducted manually by ex-
erts using software aids, like visual summary reports or visualization
oftware such as MRIQC ( Esteban et al., 2017 ). More objective, auto-
atic exclusion criteria, are currently an open and active line of work in
euroimaging (e.g., Ding et al. 2019 ; Kollada et al. 2021 ; Esteban, Blair,
t al. 2019 ). Some QC checkpoints, such as for acceptable task perfor-
ance or participant movement, are often defined for individual tasks,

xperiments and hypotheses. 
Quality assurance (QA) . Tracking QC decisions will also enable iden-

ifying structured failures and artifacts that require not just exclud-
ng affected datasets, but rather taking corrective actions to preempt
ropagation to additional datasets. When a mishap occurs, the experi-
enters should investigate its cause, and if possible, change the SOPs

 Section 2.1 ) and related materials to reduce the chance of it happen-
ng again. For example, if many participants report confusion about
ask instructions, the training procedure and experimenter script could
e altered. Automated checks and reports can be very effective, such
s real-time monitoring of participant motion during data collection
 Heunis et al., 2020 ), or validating that image parameters are as ex-
ected before storage (e.g., with XNAT Marcus et al. 2007 or ReproNim
ools Kennedy et al. 2019 ). 

Positive control analyses . A final aspect of quality assurance is the in-
orporation of positive control analyses: analyses included not because
hey are of interest for the scientific questions, but because they provide
vidence that the dataset is of sufficient quality to conduct the analyses
f interest, and that the analysis is valid. Ideally, positive control anal-
ses focus on strong, well-established effects that must be present if the
ataset is valid. For example, with task fMRI designs, button pressing,
hich should be associated with contralateral motor activation, is often
 convenient target for positive control analysis. In MEG and EEG, par-
icipants can be asked to blink their eyes, open their mouths, or clench
heir jaws, and the recordings checked for the associated artifacts. Pos-
tive control analyses should also be carried out during piloting, when
hanges to the protocol are still possible (see Section 2.1 ). For example,
f button presses are not clearly detectable during piloting, the acquisi-
ion sequence may not have sufficient SNR for the planned analyses and
hus should be modified. Positive controls can further serve for analy-
is pipeline optimization prior to conducting the optimized analysis on
he outcome of interest, thus preventing legitimate optimization from
urning into p-hacking. 

. Data acquisition 

Data acquisition is largely carried out with vendored systems. Man-
facturers typically keep their software and hardware closed or semi-
pen at most. As a result, researchers often receive highly processed
e.g., reconstructed) data as ‘raw’ data from the devices. The lack of
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Fig. 2. Data acquisition 
For each step, the figure contains the main goals (headings), specific recommen- 
dations (bullet list), and useful tools (icons). 
Sources : Icons from the Noun Project: Brain by parkjisun; Computer Screen by 
Icon Solid (adapted with a star); Logos: used with permission by the copyright 
holders. 
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S

ransparency in the acquisition details and downstream proprietary pro-
essing prevents end-to-end reproducible neuroimaging workflows. Re-
roducibility is endangered, for instance, by heterogeneity in data for-
ats, definition of critical experimental parameters, and technological
ifferences that are translated into the data as spurious, non-biological
ifferences between acquisition devices. 

A central issue is the proprietary nature of acquisition protocols.
any imaging device manufacturers require developers to use building

locks from vendor-exclusive toolboxes. This closes the door on open-
ource development and hampers multi-center consensus for modern
maging methods, especially in research. These shortcomings of mostly
losed solutions have triggered a growing interest in open-source ac-
uisition hardware and software ( Winter et al., 2016 ), Here, we pro-
ide a brief review of these developments and accompanying solutions
imed at fostering open and collaborative acquisition method develop-
ent across imaging modalities (see Fig. 2 ). 

.1. Brain data acquisition 

A common approach advocated by MRI researchers is establishing
onsensus protocols to standardize data acquisition. One of the flagship
pplications of this strategy is the Human Connectome Project (HCP)
rotocol, which achieved this within the confines of a single vendor
 Smith et al., 2013 ). The HCP acquisition sequences and reconstruc-
ion software are compiled for different MRI scanner versions of a sin-
le vendor, openly distributed and maintained for fMRI applications
 U ğurbil et al., 2013 ). However, it is generally difficult to achieve good
nter vendor agreement using off the shelf software even for widely used
rotocols, such as apparent diffusion coefficient and longitudinal re-
axation time ( Sasaki et al., 2008 ; Lee et al., 2019 ). In addition, not
ll software options are available from all vendors (for example, com-
ressed sensing ( Lustig et al., 2008 ) and frequency-domain based paral-
el imaging methods ( Breuer et al., 2005 ; Griswold et al., 2002 ). More-
ver, even seemingly simple image enhancement protocols, such as im-
ge inhomogeneity corrections, are often scarcely documented and vali-
ated but can affect inferences drawn from an experiment ( Schmitt and
ieger, 2021 ; Jellús and Kannengiesser 2014 ). Users typically have ac-
ess to key parameters of pulse sequences, which are at the center of data
cquisition. The exact pulse sequence descriptions are vendor-specific
nd may even change between software upgrades of a single vendor.
his makes it difficult to evaluate multi-center replicability of new ac-
uisition methods or to acquire longitudinal data with confidence. 
6 
Fortunately, in the last decade, several vendor-neutral data ac-
uisition pulse sequences and reconstruction frameworks have been
eveloped to mitigate this problem: Pulseq ( Layton et al., 2017 ),
yPulseq ( Ravi et al., 2019 ), GammaStar ( Cordes et al., 2020 ),
OPPE ( Nielsen and Noll, 2018 ), ODIN ( Jochimsen and von Menger-
hausen, 2004 ), and SequenceTree ( Magland et al., 2016 ) (see Table
1 ). Although these tools vary in vendor compatibility and the flexibility
f their acquisition runtime, they enable vendor-neutral deployment of
ulse sequences with transparent access to all the details needed. Nev-
rtheless, vendor-neutral raw data (k-space, i.e. the 2D or 3D Fourier
pace representation of the image) collection is half the battle. 

To complete the puzzle of MRI acquisition, interoperable and open-
ource reconstruction frameworks are essential. Thanks to ISMRM-RD
 Inati et al., 2017 ), a k-space data standard, community-developed re-
onstruction tools can have a unified way to run advanced reconstruc-
ion algorithms against undersampled raw data ( Maier et al., 2021 ).
ome of these tools include Gadgetron ( Hansen and Sørensen, 2013 ),
ART ( Uecker et al., 2015 ), MRIReco.Jl ( Knopp and Grosser, 2021 ) (see
able S1 for further tools and details). By streamlining these acquisi-
ion and reconstruction tools using data standards at multiple levels
 Karakuzu et al., 2021 ; Inati et al., 2017 ) on a data-driven and container-
ediated workflow engine ( Di Tommaso et al., 2017 ), end-to-end repro-
ucible MRI workflows can be developed. A recent study has shown that
his approach can significantly reduce inter-vendor variability of quanti-
ative MRI measurements ( Karakuzu et al., 2020 ; Karakuzu et al., 2022 ).
iven the growing open-source MRI acquisition ecosystem, a variety of
nd-to-end workflows are possible. Therefore, community-driven vali-
ation frameworks have a key importance for interoperable solutions
 Tong et al., 2021 ). Facilitated by these standards, effective and open
ommunication methods development sets the future direction for re-
roducible MRI research ( Stikov et al., 2019 ). 

In PET, the variety between different scanners is even larger than
n MRI. An overview over different scanner types based on their us-
ge for a specific radiotracer targeting the serotonin transporter, namely
 

11 C]DASB, is given in ( Nørgaard et al., 2019 ). Different PET scanners
xport images in slightly different data formats with little overlap in the
igital Imaging and Communications in Medicine (DICOM) PET specific

ags. As with MRI, reconstruction is vendor/machine specific but open
ource solutions to image reconstruction are being developed, for in-
tance the OMEGA toolbox ( Wettenhovi et al., 2021 ). Data acquisition
or PET is further complicated by the use of different PET tracers, injec-
ion methods, scan duration and scan framing or injected radioactivity
ose. 

In MEG and EEG, the problem of standardized data acquisition starts
ven earlier: unlike the common DICOM data format used across ven-
ors in MRI or PET, MEG and EEG manufacturers do not use a common
ata format, and format specifications are rarely made public. More im-
ortantly, equipment implementation significantly differs between ven-
ors, for example with respect to MEG sensor types, software noise sup-
ression techniques, and EEG amplifiers and electrodes. There have been
ome efforts on developing open versions of some proprietary tools, for
xample, the Maxwell filtering for signal space separation by the MNE-
ython team ( Gramfort et al., 2014 ). Additionally, initiatives, such as
he OpenBCI, offer open EEG hardware and tools for biosensing and
rain computer interfacing through continuous community driven de-
elopment. As we have mentioned, very little is known on how the vari-
bility of data acquisition parameters affect downstream comparability
f results. The EEGManyLabs project ( Pavlov et al., 2021 ) will provide a
omprehensive dataset in this regard, as many labs with different equip-
ent try to replicate the same studies. 

Given the large variations across different vendors for all neuroimag-
ng modalities, which often cannot be overcome, it is crucial to report
ll data acquisition parameters in a comprehensive and standardized
anner to make potential differences in data acquisition across stud-

es and sites transparent (for a discussion of reporting guidelines see
ection 6.4 ). 
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.2. Stimulus presentation and behavior 

Several actively maintained programs for stimulus presentation and
esponse logging are available. Open source software include PsychoPy
 Peirce et al., 2019 ) in Python and Psychtoolbox ( Brainard, 1997 ;
elli, 1997 ; Kleiner et al., 2007 ) in MATLAB. Both have many users,
aking it possible to get assistance and perhaps find an already-

mplemented task protocol (e.g., on Pavlovia for Psychopy). Modality
pecific resources also exist, for instance the ERP CORE (Compendium
f Open Resources and Experiments; Kappenman et al. 2021 ) openly
rovides optimized paradigms for several widely used ERP components,
long with scripts, data processing pipelines, and sample data. 

Using open stimuli and presentation software generally increases the
ikelihood a dataset will be useful to others, and its results reproducible
 Strand and Brown, n.d.2022 ). Although desirable, it is not always pos-
ible to use fully open stimuli, particularly in the case of commercial
ovies, audio plays, and image databases. Stimuli, presentation scripts,

ehavioral tests and related material should be shared whenever pos-
ible (see DuPre et al. 2019 for a list of datasets sharing naturalistic
timuli and Section 6 ). Researchers should always check the licenses on
he stimulus materials they plan to use or share. To facilitate stimuli fea-
ure analysis and exact reproducibility of the experimental paradigms,
uch projects as ReproNim’s ReproStim ( Connolly and Halchenko, 2022 )
ould automate recording and archival of audio-visual stimuli. When
pecific stimuli or material can not be released, they should be described
s unambiguously as possible and, if possible, providing the source, such
s identification number (e.g., a GTIN), and scripts to (re)produce used
timuli from the commercial media. 

. Research data management 

Good research data management (RDM), i.e. how data are orga-
ized, maintained, annotated, tracked, stored, and accessed throughout
 research project, forms the basic foundations of result reproducibil-
ty, data reusability, and research efficiency ( Wilkinson et al., 2016 ;
orgolewski and Poldrack, 2016 ; Nosek et al., 2018 ; Nosek et al., 2012 ;
osek and Lakens, 2014 ; Poldrack et al., 2017 ; Poldrack et al., 2020 ;
oldrack et al., 2019 ; Borghi and Van Gulick, 2021a ; Poline et al., 2022 ).
onsequently, Data Management Plans (DMPs) are widely required by

unders even at the application phase (e.g., NIH and NSF in the U.S., ERC
n Europe), increasingly expected by scientific peers, and holds consid-
rable benefits for individual researchers. It is good practice to develop,
Fig. 3. Research dat
For each step, the figure contains the main goals (headings), spec

Sources : Icons from the Noun Project: Structure by Adam Baihaqi from NounProject
used with permission by th

7 
eview and execute DMPs for every experiment, whether or not it is re-
uired by the funding agency. While specific RDM requirements vary
cross subdisciplines, this section highlights RDM standards and tools
pplicable across neuroimaging, ranging from data organization to an-
otation and publication (see Fig. 3 ). 

.1. Data organization and standards 

Neuroimaging experiments result in complicated data that can be
rranged in many different ways. Historically, data were organized dif-
erently between institutions and within labs. This lack of consensus
or a standard) could lead to misunderstandings and suboptimal usage
f various resources: human (e.g., time wasted on rearranging data or
ewriting scripts expecting certain structure), infrastructure (e.g., data
torage space, duplicates), and financial (e.g., disorganized data have
imited longevity and value after first publication, because it is hard or
ven impossible for other researchers to understand and use them). Fi-
ally, and most importantly, it produces poor reproducibility of results,
ven within the lab where data were collected, because it is more likely
o include errors and less likely to be accessible to future lab members
or even to the original researcher who obtained the dataset, months or
ears after they worked on it). Therefore, the need for a data standard
n the neuroimaging community became essential. 

The Brain Imaging Data Structure (BIDS) is a community-led
tandard for organizing, describing, and sharing neuroimaging data
RRID:SCR_016124]. BIDS is an evolving standard, which supports mul-
iple neuroimaging modalities including MRI ( Gorgolewski et al., 2016 ),
uantitative MRI ( Karakuzu et al., 2021 ), MEG ( Niso et al., 2018 ), EEG
 Pernet et al., 2019 ), intracranial EEG ( Holdgraf et al., 2019 ), PET
 Norgaard et al., 2022 ), Microscopy ( Bourget et al., 2022 ), and imaging
enetics ( Moreau et al., 2020 ). Many more extensions are under active
evelopment, for example, fNIRS, motion capture, and animal neuro-
hysiology. The BIDS specification documents how to organize the data,
enerally based on simple file formats (such as NIfTI for tomographic
ata ( Cox et al., 2004 ), and JSON for metadata) and folder structures.
his specification can be extended through community-driven processes
o incorporate new neuroimaging modalities or sets of data types. 

Multiple applications and tools have been released to make it
asy for researchers to incorporate BIDS into their current workflows,
aximizing reproducibility, enabling effective data sharing, and sup-
orting good data management practices. For example, BIDS convert-
rs make it easier to convert data into BIDS format (e.g., MNE-BIDS
a management 
ific recommendations (bullet list), and useful tools (icons). 
.com; Metadata by M. Oki Orlando; Data Management by ProSymbols; Logos: 
e copyright holders. 
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m  
 Appelhoff et al., 2019 ) for MEG and EEG, dcm2bids, ReproNim’s
euDiConv ( Halchenko et al., 2021 ) and ReproIn ( Visconti di Oleggio
astello et al., 2020 ) for MRI and PET2BIDS for PET; see many more
n Table S1 ). The BIDS validator can help researchers make sure their
ataset is BIDS-valid following conversion. 

Once data are in BIDS, tools are available to ease interaction with the
ata. Two commonly used software packages are PyBIDS ( Yarkoni et al.,
019 ), and BIDS-Matlab ( Gau et al., 2022 ). These tools facilitate useful
ataset queries —such as how many participants are part of a dataset
r what tasks were performed — as well as programmatically retrieving
pecific files —such as all functional runs for a specific subject. Finally,
IDS apps are containerized analysis pipelines that use full BIDS datasets
s their input and produce derivative data ( Gorgolewski et al., 2017 ).
xamples of BIDS apps include MRIQC ( Esteban et al., 2017 ) for MRI
uality control, fMRIPrep ( Esteban et al., 2019 ) for fMRI preprocessing,
nd PyMVPA ( Hanke et al., 2009 ) for statistical learning analyses of
arge datasets (see more at Table S1 ). 

BIDS is a community-led standard and strives to be open and inclu-
ive. The BIDS specification is the result of the ongoing collaboration,
hared knowledge, discussion, and consensus through the email discus-
ion list, shared Google docs, and GitHub. Questions are also answered
n the Neurostars forum and the Brainhack Mattermost channel. BIDS
as a well-specified governance structure where everybody is welcome
o participate (see BIDS Code of Conduct, Table S1 ), and the BIDS Starter
it is a growing resource intended to simplify the learning process for
ewcomers. 

.2. Metadata and data annotation 

Metadata and data annotation induces consistency and facilitates
ata replication and reuse. It improves the clarity of the dataset, the
bility for collaborators to understand the conditions in which the data
ere collected, and the ability to effectively share and reuse them. Com-
only, metadata files are data dictionaries that map key terms from an

greed-upon vocabulary to data values that contain detailed and stan-
ardized information about the key terms. For example, a key called
SampleFrequency ” might map to a numerical value, or a key “TaskDe-
cription ” might map to a free-form text that describes the task used
n a specific experiment. The BIDS standard has proposed a consistent
etadata structure in its specification along with a set of specification

erms and tags. 
Data annotation is also crucial for most data analyses in neuroimag-

ng. For example, when analyzing task-based data, an experiment’s
eproducibility is largely determined by the extent to which events
re clearly documented. Beyond reproducing previous findings, ex-
austively annotated events can allow researchers to re-use the data
or means that were originally not thought of during data collection
 Bigdely-Shamlo et al., 2020 ). However, even if each study is fully an-
otated, without a standard to consistently describe facets of events, all
nnotations will remain cumbersome and error-prone to work with, and
chieving a state of machine readability will require effortful labor. 

To address this problem, the Hierarchical Event Descriptor (HED)
tandard has been continuously developed over the past years
 Robbins et al., 2021 ; Robbins et al., 2021 ). Drawing on a set of hier-
rchical vocabulary structures (the HED base schema) and application
ules, the HED standard allows for both human- and machine readabil-
ty, validation, and search of annotations across studies. HED is also
ully integrated with the BIDS standard (see Section 4.1 ), and can be
xtended by researcher supplied schemas. 

Additionally, the Neuroimaging Data Model (NIDM; Maumet et al.,
016 ; Keator et al., 2013 ) effort aims to build a core structure for neuro-
cience datasets to improve searching across publicly-available datasets.
he initiative also provides tools to create and use NIDM documents
rom BIDS datasets ( Appelhoff et al., 2019 ). To effectively describe
euroscience data, well-developed community-driven vocabularies are
eeded. NIDM is built using semantic web techniques and builds off the
8 
ROV (provenance) vocabulary ( Moreau et al., 2015 ). Moreover, the
IDM-Terms effort has begun to collect and extend sets of community-
eveloped controlled vocabularies and techniques for associating con-
epts with selected study variables of publicly-available neuroimaging
atasets (e.g., OpenNeuro, ABIDE, ADHD200, and CoRR). This keeps a
egistry of the domain-relevant vocabularies and concepts used to an-
otate datasets, further facilitating concept reuse, and improved inter-
ataset search. The NIDM team has developed a JavaScript web applica-
ion, as well as Python-based command line annotation tools, that allow
esearchers to annotate their BIDS structured datasets and single tabular
les (e.g., csv and tsv spreadsheets), and export BIDS JSON-formatted
ata dictionaries, NIDM JSON-LD data dictionaries, and NIDM seman-
ic web documents, into sidecar files that accompany the data files.
urrently, the NIDM-Terms annotation tools allow researchers to asso-
iate their study variables with concepts available in the Cognitive Atlas
 Poldrack et al., 2011 ), the InterLex information resource, and those in
he canonical NIDM terminology/ontology as well as encourage them
o add descriptive information to improve the clarity of their variables.
uch an effort harmonizes and improves the consistency of neuroimag-
ng data and thus makes querying across neuroimaging datasets more
fficient. 

.3. Data management and tracking 

Raw data and derivatives (outputs from processed data) form the
asis for scientific analyses and insights. Being able to efficiently store,
etrieve, and update data, derivatives, and metadata across a vari-
ty of available storage options is crucial to enable further research
 Borghi and Van Gulick, 2021b ). As files change and evolve over the
ourse of a project, there is a need to identify which data have been
sed in the generation of a result, and, in case the data were subject to
hange or updates, which exact version of the data has been used. The
bility to manage data and metadata and track the data-analysis process
rovides a basis for rigor and reproducibility. 

DataLad ( Halchenko et al., 2021 ) is an open-source, community-
eveloped, general purpose tool for managing and version controlling
igital files in a decentralized manner. It tracks data of any type or
ize in a scalable, Git-repository-based overlay structure, called the
ataset (practically, a structure of folders and files). DataLad allows
racking data and metadata files stored on local devices as well as re-
ote or cloud infrastructure. DataLad can retrieve public data from
ajor providers such as OpenNeuro, the Canadian Open Neuroscience
latform, the International Neuroimaging Data-sharing Initiative, the
ealthy Brain Network Serial Scanning Initiative, Data sharing for Col-

aborative Research in Computational Neuroscience, the Human Con-
ectome Project’s open access dataset ( Van Essen et al., 2013 ), and
any more. Beyond public data, with appropriate permissions or au-

hentication, it can retrieve data from web-based storage providers
ncluding major cloud storage services, and local and remote paths
 Halchenko et al., 2021 ; Hanke et al., 2021 ). DataLad implements this
ecentralized data management functionality in order to ensure stream-
ined access to tracked data regardless of hosting service, and to ex-
ose datasets for easy access on repository hosting structure. It sepa-
ates management of file content from lean metadata management by
racking pointers to the services that host managed files (i.e., local in-
rastructure, remote hosting services, or multiple storage solutions at
nce). Using these pointers, it enables streamlined on-demand file re-
rieval in uniquely identified versions from the registered source. Im-
ortantly, data retrieval works via streamlined commands regardless of
here the data are hosted. Information about DataLad can be found

n the DataLad Handbook ( Wagner et al. 2021 , see Table S1 ). Entire
omputing environments could be efficiently managed in DataLad using
atalad-container extension ( Meyer et al., 2021 ) developed in collabo-
ation between DataLad and ReproNim projects. 

Brainlife is another open science project that allows data manage-
ent. Brainlife is a free and open community-oriented, non-commercial
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loud platform that provides web services to support reproducible data
anagement and analysis. Brainlife tracks data provenance automati-

ally for the users. As data are analyzed using the Graphical User Inter-
aces (GUI) and the platform’s data processing applications, provenance
etadata information is automatically generated and associated with

he data derivatives. The users do not have to manually save data ver-
ions, the platform does that automatically and it allows visualizing data
rovenance graphs. 

DataLad and Brainlife are synergistic but not overlapping projects
hat address different user bases and needs. Indeed, DataLad and Brain-
ife interact nicely with one another and all published datasets retrieved
y DataLad are readily accessible at brainlife.io/datasets. 

. Data processing and analysis 

Researchers typically execute a set of signal pre-processing steps
rior to advanced data analysis, to, for instance, identify and remove
oise, align data spatially and temporally, segment spatio-temporal re-
ions of interest, identify patterns and latent signal structures (e.g., clus-
ering), integrate the information from several modalities, introduce
rior knowledge about the device or the physiology of the specimen,
tc. The combination of the operations that take the unprocessed data
s the input, prepare the data for analysis, and finally, perform advanced
nalysis, comprise a full analysis pipeline or workflow . In implementing
uch analysis workflows, software has emerged as a critical research in-
trument greatly relevant to ensure the reproducibility of studies (see
ig. 4 ). 

.1. Software as a research instrument 

The digital nature of neuroimaging data along with the large, and
onstantly increasing, net amounts of daily acquired data, place soft-
are as a central instrument of the neuroimaging research workflow.
s a result, many toolboxes containing utilities ranging from early steps
f preprocessing to statistical analysis and visualization of results have
merged, and some have largely shaped the software development in the
eld, e.g., AFNI ( Cox, 1996 ; Cox and Hyde, 1997 ), FSL ( Jenkinson et al.,
012 ), SPM ( Penny et al., 2011 ; Litvak et al., 2011 ; Flandin and Fris-
on, 2008 ), FreeSurfer ( Dale et al., 1999 ; Dale and Sereno, 1993 ), Brain-
torm ( Tadel et al., 2011 , 2019 ), EEGLAB ( Delorme and Makeig, 2004 ;
elorme et al., 2021 ), MNE-Python ( Gramfort et al., 2013 , 2014 ), Field-
rip ( Oostenveld et al., 2011 ) (see Table S1 ). More recently, some
Fig. 4. Data processi
For each step, the figure contains the main goals (headings), spec

Sources : Icons from the Noun Project: Software by Adrien Coquet; Workflow by D. S
permission by the cop

9 
oftware packages have been developed to cover additional aspects of
he neuroimaging workflow. For instance, nibabel ( Brett et al., 2020 )
o read and write images in many formats, the Advanced Normaliza-
ion Tools (ANTs) for image registration and segmentation, or Nilearn
 Abraham et al., 2014 ) for statistical analysis and visualization. Work-
ow engines conveniently connect between the building blocks and de-
ermine how the steps are executed in the computational environment.
olutions range from general-purpose scripting (e.g., Bash or Python) to
euroimaging-specific libraries (e.g., NiPype; Gorgolewski et al. 2011 ).
esearchers have all these tools (and others) at their disposal to “mix-
nd-match ” in their workflow. Therefore, ensuring the proper devel-
pment and operation of the software engine is critical to ensure the
eproducibility of results ( Tustison et al., 2013 ). 

Relatedly, the variety of software implementations is an additional
otive of concern. As remarked by Carp (2012 a, 2012 b) based on the

nalysis of thousands of fMRI pipelines, analytical flexibility in combi-
ation with incomplete reporting precludes the reproducibility of the re-
ults. A recent comprehensive investigation, the Neuroimaging Analysis
eplication and Prediction Study (NARPS; Botvinik-Nezer et al. 2020 ),

ound that when 70 different teams were asked to analyze the same fMRI
ata to test the same hypotheses, each team chose a distinct pipeline and
esults were highly variable. Other studies suggest similar problems in
EG ( Š o š ki ć et al., 2021 ; Clayson et al., 2021 ), PET ( Nørgaard et al.,
020 ) and diffusion MRI ( Schilling et al., 2021 ). 

There are two crucial aspects of the high analytical variability and
ts effect on results in neuroimaging. First, when high analytical vari-
bility (that potentially affects results) is combined with partial report-
ng or with incentives to find significant effects, it can alarmingly un-
ermine the reliability and reproducibility of results. Second, even in
he apparently ideal scenario in which the researcher performs a sin-
le pre-registered valid analysis and reports it fully and transparently,
t is still likely that the results are not robust to arbitrary analytical
hoices. Therefore, new tools are needed to allow researchers to perform
 “multiverse analysis ” ( Section 5.4 ), where multiple data workflows
re used on the same dataset and all the results are reported and their
greement or convergence discussed. Community-led efforts to develop
igh-quality “gold standard ” workflows may also reduce researchers’ de-
rees of freedom as well as accelerate data analysis, although different
ipelines may be optimal for different research questions and data. 

Nevertheless, neuroimaging researchers frequently encounter gaps
hat readily available toolboxes do not cover. These gaps, amongst a
umber of other reasons (e.g., deploying a data workflow on a high-
ng and analysis 
ific recommendations (bullet list), and useful tools (icons). 
ahua; Statistics by Creative Stall; Chaos Sigil by Avana Vana; Logos: used with 
yright holders. 
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erformance computer), pushes researchers into creating their own soft-
are implementations. However, most neuroimaging researchers are
ot formally trained in related fields of computer science, data science,
r software engineering, and formal software development practices are
ften not included in undergraduate or graduate level neuroimaging
raining. This mismatch often results in undocumented, hard to main-
ain, and disorganized code; largely as a consequence of unawareness
f software development practices. It also increases the likelihood of
ndetected errors that may remain even after running tests on the code.

The first and foremost strategy available to maximize the trans-
arency of research methods is openly sharing the code with the mini-
al restrictions possible (see Section 6.2 ; Barnes, 2010 ; Gorgolewski and
oldrack, 2016 ). Complementarily, version control systems, such as Git
 Blischak et al., 2016 , see Table S1 ), are the most basic and effective
ool to track how software is developed, and to collaboratively produce
ode. Beyond making the code available to others, software tools can
mplement further transparency strategies by thoroughly documenting
heir tools and by supporting implementations with scientific publica-
ions ( Barnes, 2010 ; Gorgolewski and Poldrack, 2016 ). 

.2. Standardizing preprocessing and workflows 

Although the diversity in methodological alternatives has been key
o extracting scientific insights from neuroimaging data, appropriately
ombining heterogeneous tools into complete workflows requires sub-
tantial expertise. Traditionally, researchers used default workflows dis-
ributed along with individual software packages, or alternatively, indi-
idual laboratories have developed in-house analysis workflows that re-
ulted in highly specialized pipelines. Such pipelines are often not thor-
ughly validated and difficult to reuse due to lack of documentation or
ccessibility to outside labs. In response, several community-led efforts
ave spearheaded the development of robust, standardized workflows. 

An early effort towards workflow standardization was the
onfigurable Pipeline for the Analysis of Connectomes (C-PAC;
raddock et al. 2013 ), which is a “nose-to-tail ” preprocessing and anal-
sis pipeline for resting state fMRI. C-PAC offers a comprehensive con-
guration file, editable directly with a text editor or through C-PAC’s
raphical user-interface, prescribing all the tools and parameters to be
xecuted, and thereby making strides towards keeping methodolog-
cal decisions closely traced. Similarly, large-scale acquisition initia-
ives released workflows tailored for their official imaging protocols
e.g., the HCP Pipelines Glasser et al. 2013 and the UK Biobank Alfaro-
lmagro et al. 2016 ). 

Conversely, fMRIPrep ( Esteban et al., 2019 ) proposed the alter-
ative approach of restricting the pipeline goals to the preprocess-
ng step, while accepting the maximum diversity possible of the input
ata (i.e., not tailored to a particular experimental design or analysis-
gnosticity). This approach has recently been proposed for additional
odalities (e.g., dMRI, ASL, PET) and population/species of inter-

st (e.g., fMRIPrep-rodents, fMRIPrep-infants) under a common frame-
ork called NiPreps (NeuroImaging PREProcessing toolS). NiPreps is a

ommunity-led endeavor with the goal of ensuring the generalization of
he building blocks of preprocessing across modalities (e.g., the align-
ent of fMRI and dMRI with the same participant / animal’s anatom-

cal image) and specimens (e.g., using the same brain extraction from
natomical data using the same algorithm and implementation on both
uman adults and rodents). Similar standardization efforts are starting
o be adopted for EEG ( Desjardins et al., 2021 ) and MEG (e.g., MNE-BIDS
ipeline; Jas et al., 2018 ). Further examples of standardized workflows
re found in Table S1 . 

An additional and relevant premise of standardized workflows is
ransparency — tools must be transparent not only in their implemen-
ation, but also in their reporting. For example, fMRIPrep produces vi-
ual reports with the double goal of assessing the quality of results, and
lso providing the researcher with a resource to comprehensively un-
erstand every step of the workflow. In addition, the report includes
10 
 text description which comprehensively describes each major step in
he pipeline, including the exact software version and principle cita-
ion. This text, referred to as the “citation boilerplate ”, is released un-
er a public domain license, and therefore can be included verbatim
n researcher’s manuscripts, facilitating accurate reporting and proper
eferencing of academic software. A final relevant aspect towards trans-
arency is the comprehensive documentation of pipelines. 

In most cases, standardized workflows preprocess datasets in a fully
utomated manner, taking a BIDS dataset as input and outputting data
hat is ready for subsequent analysis with little manual intervention.
mportantly, such workflows are typically designed to be as robust as
ossible to diverse input data (e.g., with varying parameters or sam-
ling distant populations), a challenge that is facilitated by data stan-
ardization (i.e., BIDS). Additionally, workflows must be portable , en-
bling users to execute them in a wide variety of environments. A key
echnology in this endeavor is containers —such as Docker and App-
ainer/Singularity —which facilitate packaging specific versions of het-
rogeneous dependencies while ensuring cross-platform compatibility
e.g., high-performance computing clusters, desktop, or cloud services).
he BIDS apps framework ( Section 4.1 ) leverages containers by stan-
ardizing input parameters to make it trivially easy to execute a wide
ariety of standardized workflows on BIDS datasets. An example of a
igher-level combination of workflows is found in Esteban et al. (2020) ,
hich describes an MRI research protocol using MRIQC and fMRIPrep.
inally, recent efforts to standardize the outputs of workflows (BIDS
erivatives), further enhances the interoperability of workflows, by en-

uring their outputs are compatible with subsequent analysis. 

.3. Statistical modeling and advanced analysis 

Analysis of neuroimaging data is particularly heterogeneous and
rone to excessive analytical flexibility and underspecified reporting
 Carp 2012 a, 2012 b). Whereas preprocessing is ideally performed once
er dataset, there is often a large number of types of analyses that may
e used with the preprocessed data. In MRI and fNIRS, for example,
nalyses range from multi-stage general linear models (GLMs), multi-
ariable decoding analyses, to anatomical and functional connectivity,
nd more. In PET, analyses consist of region-wise averaging, although
oxel-wise approaches are gaining popularity, followed by kinetic mod-
ling and subsequent statistical analyses, which can be GLM or more ad-
anced, such as latent variable models. In MEG and EEG, the broad vari-
ty includes analyses such as evoked response potentials, power spectral
ensity, source reconstructions, time-frequency, connectivity, advanced
tatistics and more. Each type of analysis also has a wide variety of sub-
ypes, parameters, and statistical models that can be specified, and the
orm of that specification varies across the dozens of analysis packages
hat implement each type of analysis. 

Data analysis reporting may be made more transparent by shar-
ng code that relies on open-source software. A prime example is SPM
 Flandin and Friston, 2008 ), which has been open source since its incep-
ion in 1991. Additional widely used open-source tools for data analysis
re FSL and AFNI for MRI, and some examples of reproducible pipelines
or MEG and EEG developed based on each of the following software:
EGLAB ( Pernet et al. 2020 ) Fieldtrip ( Andersen, 2018b ; Meyer et al.,
021 ; Popov et al., 2018 ), Brainstorm ( Niso et al., 2019 ; Tadel et al.,
019 ), SPM ( Henson et al., 2019 ) and MNE-Python ( Andersen 2018a ;
an Vliet et al., 2018 ; Jas et al., 2018 ) (see Niso et al. 2022 for a de-
ailed review on main EEG and MEG open toolboxes and reproducible
ipelines). Reproducibility is also improved when relying on modular
nd well-documented software such as Nilearn, which offers versatile
ethods to perform advanced analyses of fMRI data, from GLM to con-
ectomic and machine learning ( Abraham et al., 2014 ). Ideally, a single
nalysis script is created, from signal extraction, data analysis, and re-
roducing all figures. 

An additional challenge for the reproducibility of analysis workflows
s the representation of statistical models across distinct implementa-
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ions of analysis software. For example, GLM approaches to analyze
MRI time series are prevalent and supported by all of the major statisti-
al packages (e.g., AFNI, SPM, FSL, Nilearn). However, specifying equiv-
lent models across packages is non-trivial and requires time consuming
ackage specific model specification ( Pernet, 2014 ), which obfuscates
etails of the statistical model, exacerbates variability across pipelines,
nd makes it difficult to perform multiverse analyses (see Section 5.4 ).
he BIDS Stats Model (BIDS-SM, see Table S1 ) specification has been
roposed as a implementation-independent representation of fMRI GLM
odels. BIDS-SM describes the inputs, steps, and specification details of
LM-type analyses, and encodes them in a machine readable JSON for-
at. The PyBIDS library provides tooling to facilitate reading BIDS-SM,

nd FitLins ( Markiewicz et al., 2021 ) is a reference workflow that fits
IDS-SM using AFNI or Nilearn. The transformative potential of BIDS-
M is showcased by Neuroscout ( de la Vega et al., 2022 ), a turnkey plat-
orm for fast and flexible neuroimaging analysis. Neuroscout provides
 user-friendly web application for creating BIDS-SM on a curated set
f public neuroimaging datasets, and leverages FitLins to fit statistical
odels in a fully reproducible and portable workflow. By standardizing

he entire process of statistical modeling, users can formally specify a
ypothesis and produce statistical results in a matter of minutes, while
imultaneously ensuring a fully reproducible and transparent analysis
hat can be readily disseminated to the scientific community. 

.4. Multiverse analysis 

The variety of data workflows reflects the enormous interest and
he need for novel software instruments, but it also poses an impor-
ant risk to reproducibility. The multitude of possible combinations of
ethods and parameters in each of the analysis steps creates an ex-

remely large number of combinations to select from. This problem
s often referred to as “researcher degrees of freedom ” or “the gar-
en of forking paths ” ( Gelman and Loken, 2013 ). Importantly, analyt-
cal choices affect results. This has been shown for preprocessing of
MRI data ( Strother et al. 2004 ; Churchill et al., 2012 ; Churchill et al.,
012 ). While this work focused mainly on the aspect of tailoring pre-
rocessing to e.g. maximize predictive models, recent efforts in fMRI
task fMRI: Botvinik-Nezer et al., 2020 ; Carp, 2012 a; preprocessing of
esting-state fMRI: Li et al. 2021 ) and PET (specifically for preprocess-
ng: Nørgaard et al. 2020 ) focused more on the variability of outcomes
n general when analysis pipelines were varied. In addition, recent stud-
es showed high variability in diffusion-based tractography dissection
 Schilling et al., 2021 ) and event-related potentials in EEG preprocess-
ng ( Š o š ki ć et al., 2021 ; Clayson et al., 2021 ). Another large-scale at-
empt to estimate the analytical variability for EEG, EEGManyPipelines
see Table S1 ), is currently ongoing. 

The converging findings of these studies across modalities suggest
hat it is crucial to test the robustness of reported results to specific
nalytical choices. One proposed solution to tackle the analytical vari-
bility, where many different analytical approaches are compared, is
ultiverse analysis ( Hall et al., 2022 ). There are two broad types of
ultiverse tools. In a “numerical instabilities ” approach, different se-

ups and numerical errors or uncertainties in computational tools are
valuated, analyses are rerun several times, and variability, robust-
ess, and “mean answer ” are estimated ( Kiar et al., 2020 ). One tool
f this type that is being developed is “Fuzzy ” ( Kiar et al., 2021 ). Al-
ernatively, in a “classic multiverse analysis ”, multiple pipelines are
sed with the same data and the results are compared across pipelines.
uch an analysis could be conducted by a single or by multiple re-
earchers ( Aczel et al. 2021 ). Although multiverse analysis was sug-
ested before in other fields ( Simonsohn et al., 2020 ; Steegen et al.,
016 ; Simonsohn et al., 2015 ; Patel et al., 2015 ), there are not yet ma-
ure “classic multiverse analysis ” tools for high-dimensional data like
n neuroimaging. Explorable Multiverse Analyses is an R-tool that al-
ows the readers to explore different statistical approaches in a paper
 Dragicevic et al., 2019 ). Other tools, such as the Python-based Boba
11 
 Liu et al., 2021 ), aim to facilitate multiverse analyses by allowing users
o specify the shared and the varying parts of the code only once and
y providing useful visualizations of the pipelines and results. However,
hese tools currently fit simpler analyses and datasets compared to the
nes common in neuroimaging. 

In neuroimaging, recent progress has been made in creating in-
rastructure for multiverse analysis in fMRI, based on the C-PAC tool
see Section 5.2 ; Li et al. 2021 ). Ongoing efforts to formalize machine-
eadable standards for statistical models (BIDS-SM) and pipelines to esti-
ate them (e.g., FitLins; Markiewicz et al., 2021 ), and their integration
ith datasets using platforms such as Brainlife ( Avesani et al., 2019 ),

ould facilitate the development of multiverse tools. In order to make
ense of a multiverse analysis, one needs methods to test for conver-
ence across results of diverse analysis pipelines with the same data.
uch a method for fMRI image-based meta-analysis was recently used
n NARPS ( Botvinik-Nezer et al., 2020 ) as well as in subsequent projects
 Bowring et al., 2021 ). Another simple statistical approach to a mul-
iverse analysis was presented with PET data ( Nørgaard et al., 2019 ),
lthough it lacks statistical power, due to the use of a very conser-
ative statistic. A different approach is to use active learning to ap-
roximate the whole multiverse space ( Dafflon et al., 2020 ). Moreover,
oos et al. (2021) provided an online application to explore the effects
f the choice of parameters on the results (data-driven auditory encod-
ng, see Table S1 ). Progress is still needed until such tools are mature
nough to allow scalable multiverse analysis in neuroimaging. 

. Research dissemination 

Through the whole research cycle a range of outputs far beyond pub-
ications are produced, and each of them can have different levels of re-
roducibility and openness (see Fig. 5 ). For shared resources to be use-
ul, they need to follow the FAIR principles ( Wilkinson et al., 2016 ), to
nsure they are: Findable (e.g., using persistent identifiers, such as Dig-
tal Object Identifiers (DOI) or Research Resource Identifiers (RRIDs),
nd described with rich metadata indexed in a searchable resource),
ccessible (e.g., shared in public repositories, under open access or con-

rolled access depending on regulations, so they can be retrievable by
heir identifier using standardized communication protocols), Interoper-

ble (e.g., following a common standard for organization and vocabu-
ary), and Reusable (e.g., richly described, with detailed provenance and
n appropriate license). Indeed, without a license, materials (data, code,
tc.) become unusable by the community due to the lack of permission
nd conditions for reuse, copy, modification, or distribution. Therefore,
onsenting through a license is essential for any material to be publicly
hared. 

A useful generalpurpose resource, beyond neuroimaging, including
ractical guidelines on reproducible research, project design, commu-
ication, collaboration, and ethics is The Turing Way (TTW, The Turing
ay Community et al. 2019 , see Table S1 ). TTW is an open collabora-

ive community-driven project, aiming to make data science accessible
nd comprehensible to ensure more reproducible and reusable projects.

.1. Data sharing 

Making data available to the community is important for repro-
ucibility, allows more scientific knowledge to be obtained from the
ame number of participants (animal or human), and also enables sci-
ntists to learn and teach others to reuse data, develop new anal-
sis techniques, advance scientific hypotheses, and combine data in
ega- or meta-analyses ( Poldrack and Gorgolewski, 2014 ; Laird, 2021 ;
adan, 2021 ). Moreover, the willingness to share has been shown to

e positively related to the quality of the study ( Wicherts et al., 2011 ).
ecause of the many advantages data sharing brings to the scientific
ommunity ( Milham et al. 2018 ), more and more journals and fund-
ng agencies are requiring scientists to make their data public (curated
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Fig. 5. Dissemination 
For each step, the figure contains the main goals (headings), specific recommendations (bullet list), and useful tools (icons). 

Sources : Icons from the Noun Project: Data Sharing by Design Circle; Share Code by Danil Polshin; Data by Nirbhay; Publication by Adrien Coquet; Broadcast by 
Amy Chiang; Logos: used with permission by the copyright holders. 
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nd archived with a public record, but controlled access) or open (pub-
ic data with uncontrolled access) upon the completion of the study, as
ong as it does not compromise participants’ privacy, legal regulations,
r the ethical agreement between the researcher and participants (see
ections 2.3 and 7 ). 

For data to be interoperable and reusable, it should be organized
ollowing an accepted standard, such as BIDS ( Section 4.1 ) and with
t least a minimal set of metadata. Free data-sharing platforms are
vailable for publicly sharing neuroimaging data, such as OpenNeuro
 Markiewicz et al., 2021 ), Brainlife ( Avesani et al., 2019 ), GIN (G-Node
nfrastructure), Ebrains, Distributed Archives for Neurophysiology Data
ntegration (DANDI), International Neuroimaging Data-Sharing Initia-
ive (INDI), NeuroImaging Tools & Resources Collaborator (NITRC), etc.
see Table S1 ). Data could also be shared on institutional and funder
rchives such as the National Institute of Mental Health Data Archive
NDA); on dedicated repositories, such as the the Cambridge Centre for
geing and Neuroscience, Cam-CAN ( Shafto et al., 2014 ; Taylor et al.,
017 ) or The Open MEG Archive, OMEGA ( Niso et al., 2016 ); or on
eneric archives that are not neuroscience or neuroimaging specific,
uch as figshare, GitHub, the Open Science Framework, and Zenodo.
f allowed by the law and participants’ consent (see Section 2.3 ), data
haring can be made open, or at least public. 

Once curated and archived, data can further benefit the individual
esearcher, for example by adding them to the scientific literature in the
orm of data descriptors. Such an article type is not intended to commu-
12 
icate findings or interpretations but rather to provide detailed informa-
ion about how the dataset was collected, what it includes and how it
ould be used, along with the shared data. In addition, an “open science
adge ” for data sharing is available in an increasing number of scientific
ournals ( Kidwell et al., 2016 ) and some prizes are also available as a
ecognition for such efforts (e.g., OHBM’s Data Sharing prize). 

It is important to note that there are unresolved issues with interna-
ional data sharing that some researchers should consider before sharing
heir neuroimaging data. First, privacy regulations can differ tremen-
ously between cultural, legal, and ethical regions, and these differences
ave an impact on whether certain data can be shared (e.g., unprocessed
RI images) and if so, under which restrictions (e.g. openly or after sign-

ng a data user agreement). Data sharing platforms vary in physical loca-
ion and access policies, adding complexity to the choice of site. There is
n ongoing discussion of these issues (see e.g., Jwa and Poldrack, 2022 ;
ke et al., 2022 ) and solutions are under development, for instance via
he EBRAINs infrastructure ( Amunts et al., 2019 , 2016 ) . It can be ex-
ected that data sharing procedures will undergo further transforma-
ions as privacy laws in some jurisdictions shift towards GDPR-type laws,
nd more adequacy decisions will be made by the EU Commission (e.g.
he Consumer Privacy Protection Act in Canada, or the California Con-
umer Privacy Act). Second, it is unclear how researchers are properly
redited for data they collected and shared. Sharing data with a DOI,
r as a data paper when appropriate, allows the researchers to receive
ome academic credit via citations. 
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.2. Methodological transparency 

Documenting performed analysis steps is key for reproducing stud-
es’ results. For studies containing a small number of procedures, the
ethods section of an article could detail them in full length. This is,
owever, often not the case in current neuroimaging studies, where
uthors may need to summarize content in order to fit into the des-
gnated space, likely omitting relevant details. Therefore, the program-
ing code itself becomes the most accurate source of the exact analysis

teps performed on the data, and is anyway needed for reproducibil-
ty. Thus, it needs to be organized and clear (see recommendations sug-
ested by Sandve et al. 2013 ; van Vliet 2020 ; Wilson et al. 2017 ), other-
ise, results may not be reproducible, or even correct ( Casadevall and
ang, 2014 ; Pavlov et al., 2021 ). It should be noted that sharing an im-
erfect code is still much better than not sharing at all ( Barnes, 2010 ;
orgolewski and Poldrack, 2016 ). 

While GUIs are a great and interactive way to learn to analyze data,
ne has to pay special attention to properly report the steps followed, as
anual operations are more difficult to be reported and reproduced than

utomated code ( Pernet and Poline, 2015 ). Some toolboxes using GUIs
eep track of data ‘history’ and ‘provenance’ (e.g., Brainlife, Brainstorm,
EGLAB, FSL’s Feat tool) facilitating this task. Efforts are being put to
mprove these features. 

To ensure long-term preservation of the shared code, we suggest us-
ng version control systems such as Git, and social coding platforms
uch as GitHub in combination with an archival database for assign-
ng permanent DOI to code served for research, for instance, Zenodo
 Troupin et al., 2018 ), brainlife.io/apps ( Avesani et al., 2019 ) or Soft-
are Heritage ( Di Cosmo, 2018 ). These platforms help keep a snapshot
f the version of the code used for the paper published, allowing exact
eproduction in case of later code updates. 

.3. Derived data sharing 

Sharing data derivatives is perhaps the most critical yet most chal-
enging aspect of data sharing in support of reproducible science. The
IDS standard provides a general description of common derivative data
e.g., preprocessed data and statistical maps) and is actively working
owards extending advanced specific derivatives for the different neu-
oimaging modalities. Yet, standards for the description of advanced
erivatives (such as activation or connectivity maps, or diffusion mea-
ures) are currently not available or mature for wide use. As a result,
o date, the community lacks clear guidance and tools on how derived
ata should be organized to maximize its reuse and to encompass its
rovenance, and where such data could be shared. 

Solutions for sharing derivatives comprise a mixture of in-house and
emi-standardized data-tracking and representation methods. Examples
f data-derivative sharing are the high-profile, centralized projects,
uch as the Human Connectome Projects ( Van Essen et al., 2012 ),
brains of the Human Brain Project ( Amunts et al., 2019 , 2016 ), the
K-Biobank ( Alfaro-Almagro et al., 2016 ), the NKI-Rockland sample
 Nooner et al., 2012 ), and the Adolescent Brain Cognitive Development
ABCD; Feldstein Ewing and Luciana, 2018 ) to name a few (see Table
1 ). These projects have developed project-specific solutions and in do-
ng so also have provided a first-level implementation of what could be
onsidered a data derivative standard. Yet, these projects are far from
eing open or community-developed as they must be centrally governed
nd mandated by the directives of the research plan. 

As a result of the paucity of community-oriented standards, archives
nd software methods, sharing highly-processed neuroimaging data is
till the frontier of reproducible science. One community-open archive
or highly processed neuroimaging data derivatives is NeuroVault
 Gorgolewski et al., 2015 ). The archive accepts brain statistical maps
erived from fMRI with the goal of being reused for meta-analytic stud-
es. Data upload is open to researchers world-wide and the archive can
ccept brain maps submitted using most major formats but preferably
13 
sing the NeuroImaging Data Model (NIDM; see Section 4.2 ). Another
nteresting example for automated and standardized composition and
haring of derived data is TemplateFlow ( Ciric et al., 2021 ), which pro-
ides an open and distributed framework for establishment, access, man-
gement, and vetting of reference anatomies and atlases. 

Another general neuroimaging platform, which allows lowering the
arrier to sharing highly processed data derivatives, is Brainlife. Brain-
ife provides methods for publishing derivatives integrated with the
ata-processing applications used for generating results from the data
ia easy-to-use web interfaces for data-upload, processing, and publish-
ng. Different licenses can be selected when publishing a record, allow-
ng reuse of data and derivatives to other researchers (see sources that
upport the selection of an appropriate license listed in Table S1 ). 

Sharing lighter-weight data products such as tables and figures is
asier using generic repositories (e.g., OSF, Figshare, Github or Zenodo)
nder, for example, CC-BY license. This allows authors to retain rights
n the figures they created, and others to re-use their figures, either
n other publications or for educational purposes, while giving credit to
he originating team. Additional material, such as slide presentations, or
upporting content, should be shared using accessible formats (e.g., im-
ge files, pdf, PowerPoint slides, Markdown, jupyter notebooks, etc) via
nline repositories or institutional platforms, with appropriate licenses
o indicate how the work could be reused. Whenever possible, using plat-
orms that ensure long-term preservation is recommended (e.g., Zenodo,
igShare, OSF). Using platforms that provide a DOI is particularly en-
ouraged, because it ensures that the shared data would be identifiable
n the future. 

.4. Publication of scientific results 

Scientific papers are currently the most important means for dissem-
nating research results. However, they should also be written with re-
roducibility in mind. Guidelines to improve reproducibility can sup-
ort the writing. The OHBM Committee on Best Practices in Data Anal-
sis and Sharing (COBIDAS), has been promoting best practices, in-
luding open science. Recommendations from the committees for MRI
 Nichols et al., 2017 ) and MEG and EEG ( Pernet et al., 2020 ) provide
uidance on what to report. Other recent community efforts also led
o guidelines for PET ( Knudsen et al., 2020 ) and EEG reporting (e.g.,
greed Reporting Template for EEG Methodology - International Stan-
ard (ARTEM-IS) Styles et al. 2021 ). One tool that could help authors
ollow these guidelines while writing their report are their web-based
pps (see Table S1 ). For the data description and preprocessing as-
ects, some tools (pyBIDS, bids-matlab) or pipelines (fMRIPrep) can also
enerate reports automatically, and/or method templates are provided
see Section 5.2 ). Exact description of methods is mandatory for repro-
ucibility alongside detailed reporting of results. 

In recent years, it has become very common in neuroimaging to
ublish papers as preprints, on servers such as bioRxiv, medRxiv,
syArXiv or OSF (see Table S1 ), prior to peer review in scientific jour-
als. Preprints are publicly available, expedite the process of releas-
ng new findings, and also, importantly, allow authors to get feed-
ack on their paper from a broader audience prior to final publication
 Moshontz et al., 2021 ). There are also initiatives for open community
eviews of preprints, such as PREreview. Other initiatives have emerged
o adapt to this paradigm shift, such as the recently launched Open Eu-
ope Research platform for publication and open peer review, which
lso includes the different outputs obtained throughout the research cy-
le (e.g., study protocol, data, methods and brief reports through the
rocess) for research stemming from Horizon 2020 and Horizon Europe
unding. In addition, novel publication formats have been developed,
ike NeuroLibre ( Karakuzu et al., 2022 ), a preprint server to publish
ybrid research objects including text, code, data, and runtime environ-
ent ( DuPre et al., 2022 ). More traditional publishers have successfully
artnered with companies such as CodeOcean ( Cheifet, 2021 ) to provide
imilar services. 
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1 https://ohbm-environment.org/ . 
Crucially, papers should be accessible to others, preferably to every-
ne. Many scientific publications are hidden behind paywalls, practi-
ally denying access from many people who could have gained from
hem. This is now slowly changing ( Piwowar et al., 2018 ), with both re-
earchers and funding agencies pushing towards open access, meaning
hat papers are fully open to all. Although the adoption of the concept of
pen access by major publishers is in itself a positive development, the
ay it was adopted could be considered arguable. For example, several

ournals considerably increased article processing charges ( Khoo, 2019 ;
udzinski et al., 2020 ), increasingly excluding research produced in labs
ith lower levels of resources, particularly in Low and Middle Income
ountries, from being published open access ( Nabyonga-Orem et al.,
020 ). Additionally, some publishers implement massive tracking tech-
ology with the argument to protect their rights and offer the data or
erivatives of them for sale, as a recent report published by the German
esearch Foundation criticizes ( DFG, 2021 ). This raises many questions,
elated, for example, to the influence publishers and their algorithms
ill have in the future on strategic decisions of science institutions and

reedom of science. 

.5. Beyond publication 

The research lifecycle continues beyond paper publication. Dissem-
nating scientific results to the broader scientific community and to the
ociety in general is of utmost importance, to translate the newly ac-
uired knowledge and give back to society. Oral and poster presenta-
ions at conferences contribute to the dissemination of results (including
reliminary or intermediate results) within the scientific community,
nd also provide opportunities for feedback prior to publication. Work-
hops and other educational events contribute to expand the knowl-
dge further and induce new communities. Popular and social media
e.g., press releases, interviews, podcasts, blog posts, twitter, facebook,
inkedin, youtube, etc.) may reach an even wider and more heteroge-
eous audience. Different types of audiences may have different degrees
f expertise and scientific knowledge, hence, for an effective commu-
ication, each of the outreach events should adapt accordingly (e.g.,
voiding jargon and over interpretation, identifying your audience, pro-
oting accessibility in content and language ( Amano et al. 2021 ), and

onsidering disabilities). See the TTW Guide for Communication for rec-
mmendations ( The Turing Way Community et al., 2019 ). Slides presen-
ations, and further outreach content should be shared FAIRly for higher
mpact (see Section 6.3 ). 

Hackathons - such as the Brainhacks in the neuroimaging community
 Gau et al., 2021 ) - typically offer times for “unconferences’’ in which
ttendees can propose a short talk to present some work-in-progress, an
pen question, or any other topic they wish to discuss with other partic-
pants. This deviates from more typical conferences in which only well-
olished, finalized results can be presented. Other initiatives, such as
euromatch Academy, Neurohackademy, OHBM Open Science Room,
nd Brainhack school MLT facilitate open science and provide opportu-
ities for researchers to learn and get hands-on experience with open
cience practices, and also to engage with other researchers in the com-
unity. Those hackathons and the related online communities are also
ell-known as kick-starters for the development of community tools and

tandards in which researchers and engineers from different labs join
orces. As those tools and standards get shaped, typically in multi-lab
ollaborations, researchers get the chance to exchange their views and
ractices. Overall, such events, slowly but surely, help shape a research
ulture that is driven by open collaborative communities rather than
ingle groups of researchers. 

.6. Towards inclusive, diverse and community driven research 

Taken to the next level, the described developments and introduced
ools provide an opportunity for a paradigm shift: rather than carrying
ut a study from inception to results and only then disseminating the
14 
ndings to the community, researchers now get multiple opportunities
o share their ideas and results as they are being developed. Scientific
esearch can now become more transparent, inclusive and collaborative
hroughout the research cycle. 

Inclusivity, in particular, has the potential to increase reproducibil-
ty (and more specifically, the generalizability and robustness) and re-
earch results quality, by diversifying neuroimaging research, from the
articipants included in the samples to the views and ideas of the re-
earchers ( Henrich et al., 2010 ; Laird, 2021 ; Forbes et al., 2021 ; Hofstra
t al., 2020 ). Publishing Code of Conduct for collaborative projects is
ne practice that helps ensure a more welcoming and inclusive space
or everyone regardless of background or identity. Initiatives such as
TW ( The Turing Way Community et al., 2019 ) or the OHBM Confer-
nce have detailed Code of Conducts that can be of inspiration to adapt
nd use in new collaborative projects. Over the past years, the awareness
nd number of initiatives to mitigate bias and inequity at individual and
nstitutional levels are growing ( Llorens et al., 2021 ; Levitis et al., 2021 ;
alkinson et al., 2021 ; Schreiweis et al., 2019 ). These aim to produce

etter research powered by a broader range of perspectives and ideas
nd to reduce the negative impact on the careers, work-life balance, and
ental health of underrepresented groups. By providing open resources

nd promoting welcoming and inclusive spaces, we are also improving
ccess to the tools, training and infrastructure which can facilitate re-
roducible research, which will accelerate discoveries, and ultimately,
dvance science. 

. Conclusions 

Recent years have marked the rise of “open science ”, producing
umerous tools and practices that enhance the reproducibility, trans-
arency, inclusivity and diversity of research in general and in neu-
oimaging specifically. These tools and practices yield benefits at mul-
iple levels ranging from the individual researcher to the society. At
he societal level, they can increase transparency and credibility of re-
earch, foster the public understanding of scientific findings, and pro-
ote participation. Higher public credibility in research results can

upport decision-makers in basing their decisions on scientific knowl-
dge. For the scientific community, such practices can increase the
uality and generalizability of scientific products. They also increase
he cost-effectiveness of invested resources (money, time, personnel,
tc.), by, for example, enabling reuse of collected data and developed
ethods and tools ( Milham et al., 2018 ). Acquiring and analyzing data

lso has a substantial environmental cost, which can be minimized
hen research data and products are shared and reused 1 https://ohbm-
nvironment.org/ . For individual researchers, the application of open
cience practices can improve their chances for funding and recognition
n the community by meeting related requirements from funding insti-
utions, agencies, and scientific journals. Furthermore, the use of open
cience tools and practices can ease the use of novel analysis techniques
nd open the researcher new opportunities for collaborations and con-
ributions, which in turn transform the research culture. 

In this review we have attempted to comprehensively summarize a
road range of open and reproducible science practices. However, to
aximize their impact it is important to position these efforts in the

roader scientific reform debate. In particular in psychology, many have
rgued that the very theories that guide the design of experiments lack
igor ( Oberauer and Lewandowsky, 2019 ), and overreach due to im-
roper use of inferential statistics ( Yarkoni, 2022 ). It has been suggested
hat a formalization of theoretical models and claims ( Lee et al., 2019 ;
uest and Martin, 2021 ; Devezer et al., 2021 ) — including claims made

n favor of the open and reproducible practices and tools reviewed here
is critical to truly advance the field. Although these issues require

ngoing deep introspection and cannot be solved solely by adopting the

https://ohbm-environment.org/
https://ohbm-environment.org/
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ractices we reviewed, these practices increase our field’s rigor by help-
ng scientists ensure they achieve their stated standards and constitute
rst steps towards better formalization of designs, models, and conclu-
ions (e.g. with SOPs, formalized statistical models, and pre-registrations
hich could lead to better formalization of theory-based experimental
esigns and predictions). 

The abundance of tools and practices for open and reproducible neu-
oimaging is both promising and challenging. They should support sci-
ntific practices rather than setting up new hurdles, for example with
xceedingly rigid rules, particularly time consuming processes, or re-
uiring highly developed programming skills. This review was written to
ssist neuroimaging researchers in making informed and sustainable im-
lementation choices in their own research, by means of understanding
he purpose of each tool, how they interact together, how to use them,
nd where to look for further information. We believe it will prove help-
ul for researchers and institutions to make a successful and sustainable
ove towards open and reproducible science, contributing to improving

cientific research and, ultimately, accelerating scientific discoveries. 
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